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1 Introduction

Wouldn’t be great to write or draw on any surface, without the need of ink, and
obtain the result in digitalized format? Well, we think it would. This is why
the ”Inkless Painting” project was our choice among the ones proposed by our
Image analysis and Computer Vision professor.
The task was to develop an algorithm that, given a video of someone drawing
using a pen without ink, recovers the 3D trajectory of the pencil tip. Given
that, it is possible to reconstruct the drawing, by simply keeping the part of the
trajectory near the writing surface.
We obtained good results by imposing some requirements:

• The user should provide calibration images together with the video: at
least twenty or thirty for intrinsic calibration, while a single one for ex-
trinsic calibration. Calibration images are pictures of a known template,
that will be called calibration marker in this document.

• The camera pose need to be fixed during the whole video, and equal to
the one in which the extrinsic parameters calibration image was taken.

• The pencil must be rigidly attached to a simple marker we designed, that
we call pencil marker, and visible during the whole video. Best results are
obtained when the marker is attached to a planar surface on the pencil.

• A color space filter is given. This should preserve, on each frame, the
marker and few other aspects of the image. From this, a robust detection
algorithm will extract the marker geometrical features on each frame.

• A model of the pencil is given. The model consists in the length of some
lines belonging to the pencil marker, and the tip position with respect to
some point of the marker.

• The pencil is always directed toward the table.
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A very important aspect is that we do not use any tracking algorithm: the
marker is detected and the 3D position of the pencil tip is recovered frame by
frame, without using any prior information over the pencil pose in the previous
frames. At the end, when a full trajectory is recovered, we apply a very simple
smoothing procedure with outliers rejection.
Summarizing, the aim of our work is to show the application of Computer Vision
technologies to a particular task of everyday life. With some enhancement we
describe in section 8, we think that it is possible to obtain a user friendly
application based on our reconstruction algorithm.
The document is structured in the following way: in section 2 we describe the
calibration algorithm used, in section 4 how the salient points of the pencil
marker are extracted from a frame, and in section 5 how the 3D reconstruction
of those points is performed. Then we describe the smoothing and outliers
rejection procedure in section 6. Finally in section 7 we show the result of the
application of our pipeline to some videos.

Nomenclature

K Calibration matrix

o position of the camera reference frame in the world reference frame, as
column vector

P projection matrix

Rw
c rotation of the camera reference frame with respect to the world refer-

ence frame

Rc
w rotation of the world reference frame with respect to camera reference

frame

t position of the world reference frame in the camera reference frame

x image point in pixel coordinates, as column vector

Xf 3D point coordinates expressed in reference frame f , as column vector

cx, cy Optical center

fx, fy Focal length

s Skew factor
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2 Calibration

The calibration phase aims at finding intrinsic and extrinsic camera parameter,
i.e. the calibration matrix K, the rotation matrix Rc

w and the vector t (Hartley
and Zisserman, 2003). Calibration is needed to understand how points in the
real word are projected in the image plane, to measure the size of an object in
world units, or to determine the location of the camera in the scene.

World coordinates [X, Y, Z] Camera coordinates [Xc, Yc, Zc] Pixel coordinates [x, y]

Extrinsic Parameters Intrinsic Parameters

Rigid, 3D to 3D Projective, 3D to 2D

It is worth noticing that our calibration and localization procedure is free
from user interaction. The user should only provide calibration images and one
localization image. Our algorithm establishes when a calibration image is good
and it is able to detect bad images, discarding them.

Intrinsic Parameters The intrinsic parameters include the focal length [fx, fy]t,
the optical center [cx, cy]t, also known as the principal point, and the skew co-
efficient s. The camera intrinsic matrix, K, is defined as:

K =

fx s cx
0 fy cy
0 0 1

 . (1)

The intrinsic parameters represent a projective transformation from the 3D
camera’s coordinates into the 2D image coordinates

Extrinsic Parameters The extrinsic parameters consist of a rotation, R, and
a translation, t. The origin of the camera’s coordinate system is at its optical
center and its x and y-axis define the image plane. The extrinsic parameters
represent a rigid transformation from 3D world coordinate system to the 3D
camera’s coordinate system.

2.1 Calibration From Homographies

Among all the possible methods for camera calibration present in the literature
(Caprile and Torre, 1990; Brown, 1971; Hartley, 1994; Maybank and Faugeras,
1992), we follow the approach of calibration from homographies (Zhang, 1998).
Given an image of a known planar scene we can place the world reference frame
on the plane π describing the scene, thus Rπ = Rc

w, for ease of notation we
denote it by R = [r1 r2 r3]. A point on the plane π is described in the world
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reference frame with [X Y 0 1]
t

and it is related with its image [u v 1]
t

by:

uv
1

 = sK [R | t]


X
Y
0
1

 (2)

= K
[
r1 r2 t

] XY
1

 (3)

= H

XY
1

 . (4)

Thus the knowledge of the homography H is needed for the estimation of K.
From the calibration images we extract SURF (Bay et al., 2008) features, we
match extracted features with features of the known template and finally we es-
timate the homography using RANSAC (Fischler and Bolles, 1981), for robust
model fitting.
Circular points on the plane π have coordinates I = [1 + j 0]

t
and J = [1 − j 0]

t
.

Their image belongs to the image of the absolute conic ω = (KKt)
−1

. Let
H = [h1 h2 h3], we can write:

ht1ωh2 = 0 (5)

ht1ωh1 = ht2ωh2 . (6)

We fit an homography for each image, thus we need at least two images for
solving the four degrees of freedom of K, assuming no skew. For a better fitting
we used at least twenty images and least square solution. In our implementation
we directly parametrized ω, noting that, for a zero-skew camera (s = 0), this
can be rewritten as:

ω =

 α2 0 −cxα2

0 1 −cy
−cxα2 −cy f2y + α2c2x + c2y

 , (7)

where α = fx
fy

is the aspect ratio of the pixels.
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(a) The calibration marker

(b) An example of calibration image

Figure 1

2.2 Extrinsic Calibration

Camera localization is the process of determining extrinsic camera parameters.
Our localization process requires the image of the calibration marker to be taken
from the same position as the one during the video.
Placing the world reference frame on the calibration marker, we apply the planar
object localization algorithm (see appendix A) obtaining the rotation Rc

w and
translation vector t. The required homography is estimated as in the previous
section.
The camera location is determined by the inverse transformation:

Rw
c = Rc−1

w (8)

o = −Rw
c t . (9)
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3 The Pencil Marker

Pencils present a very limited surface, thus a custom marker needs ot be designed
for our purposes. Plus, some requirements need to be satisfied:

• The marker needs to be composed by few well distinguishable basic ele-
ments, for easy solution of the data association problem.

• The marker can be easily detected and should present keypoints that can
be fed to a single view 3D reconstruction algorithm.

• Given the marker keypoints 3D reconstruction, the pencil tip position is
uniquely determined.

We came out with a planar marker composed by five lines of the same color,
that can be isolated from the rest of the image in some color space.
Among the five lines two are long and parallel, while the other three are shorter
and perpendicular to the long ones. The long lines intersect the short ones,
generating a triple of collinear points for each vertical line. This choice is mo-
tivated by the fact that a triple of collinear points, whose real world distances
are known, can be 3D reconstructed by the algorithm presented in appendix B.
We position the marker on the pencil in such a way that the long lines are par-
allel to the pencil axis, and the tip projection on the marker plane falls between
the long lines.
The presence of two triple of collinear points placed on parallel lines allows to
robustly fit the 3D vertical direction of the marker, and gives a better under-
standing of the pencil position. In particular, a single triple of vertical points
would not allow to recover the tip position, giving infinite solutions for the
rotation around the three points axis.

(a)
(b)

Figure 2: Our pencil marker (a), and two examples of pencils with a marker placed
on them (b).
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4 Detection

The goal of this phase is to extract, from each frame, the two triple of collinear
points belonging to the long lines of the pencil marker. Inside each triple data
association is solved, distinguishing points as high, med, and low point.
In our approach detection is divided into: preprocessing, line extraction with
Hough transform, line selection, Harris Corner Detection and finally marker
fitting.

4.1 Preprocessing

During the preprocessing phase a color space filter is applied to the frame re-
moving all useless parts of the image and saving (hopefully) only the marker
and few other features.
We further apply a dilation filter followed by an erosion filter with infinite width
(see appendix D). In this way we obtain lines of approximately one pixel width,
helping the Hough algorithm in its work.
An example of the preprocessing pipeline intermediate results is shown in fig. 3.

4.2 Hough Transform

Horizontal and vertical lines on the pencil marker are independently extracted,
so that two different set of parameters (line length, angles, neighborhood sup-
pression) can be set. Hough parameters must be tuned on the specific video,
but it is worth noting that we do not expect only the interesting lines to be
extracted, since we apply a robust selection algorithm.
This module outputs two sets of marker lines candidates, one for long vertical
lines, and the other for short horizontal lines.

4.3 Line Selection

This module selects, among the candidates, the lines most likely to be the ones
of the marker.
First we consider all the possible couples of vertical lines, and we remove the
ones whose elements intersect, when considered as segments. This can be done
since Hough lines are segments in the image.
Among the remaining, we select the couple with smallest angular distance. This
is based on the assumption that the perspective effect is not so evident for couple
of short near lines, at small distance from the camera.
Given the pair of vertical lines, we search for the triple of horizontal lines nearest
to be perpendicular to the vertical couple, with the same constraints on the
intersection point as before.
Results are showed in fig. 4. It is possible to see that there are many horizontal
candidates after having applied Hough. Our algorithm is able to select the lines
that most likely belong to the marker getting rid of useless lines.
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(a) Original frame (b) RGB mask

(c) Dilated Image (d) Eroded Image

Figure 3: An example of intermediate results of the preprocessing pipeline

4.4 Harris Corner Detection

Lines on the pencil marker are fully determined by the six points at the inter-
section of the five lines. Since our reconstruction algorithm is based on these
points, it is important to detect them as precisely as possible.
At a first glance we could use intersection of lines detected in the previous stage,
but this can be inaccurate since lines originates from the application of a color
space filter, that suffers lighting variation. For a more precise keypoint detec-
tion we use the lines intersections as guesses, and we search corners in their
neighborhood.
Given xihint the i-th intersection, we apply Harris Corner Detection to a small
region of the image centered in xihint. We extract the n strongest corner in
that region and average them 5. This adjustment gives a big improvement with
respect the use of the lines intersections.
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4.5 Marker Fitting

All the previous phases aim at finding good corner candidates, but they do not
take in account the exact marker model. Thus it is possible to obtain non-
collinear points, a situation not admissible for the following stages.
Given the marker model expressing the 2D relative positions of marker points,
it is possible to find an homography H mapping them to the ones detected in
the current frame. H can then be applied to the marker model, obtaining the
least square marker image given the detected corners. This stage also acts as
2D geometrical check: if the homography found is too poor (the residual error
is too high) the detection phase fails and the frame is rejected.
All the detection pipeline is specified in algorithm 1.

Algorithm 1 Detection

Input: frame f , pencil marker model m, 2D error threshold ε,
applyColorF ilter function

Output: Image of marker corner points xic, i = 1..6 if geometrical check passed,
otherwise frame refused

1: mask ← applyColorF ilter(f)
2: mask′ ← dilateAndErode(mask) . Preprocessing
3: lines← HoughLines(mask′)
4: verticalLines, horizontalLines← selectLines(lines)
5: for i in 1,..,6 do
6: xiint ← i-th intersection between horizontal and vertical lines
7: xih ← HarrisCornerDetector(ROI(xihint))
8: end for
9: H← fitHomography(m,xint) . Marker Fitting

10: for i in 1,..,6 do
11: errori =|| xiint −Hmi || . Residual
12: if errori > ε then . 2D geometrical check
13: refuse frame
14: else
15: xic ← Hmi . Corner replacement with the fitted one
16: end if
17: end for
18: return Detected Corners in frame f : xc
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Figure 4: Two examples of line extraction. Left: lines extracted by Hough. Right:
lines selected by our algorithm
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Figure 5: Two examples of corner detection. A zoom of the marker in grayscale (left).
Region of interest (right) with extracted corners using Harris corner detector in green,
the average of the coordinates of the corners in red. The black square represents the
region of interest centred in the line intersection.
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5 Reconstruction

We want to recover, from the knowledge of the marker points pixel coordinates
{xupi ,xmedi ,xlowi }i=1,2, the tip 3D position Xc

t .
Since the marker positioning on the pencil is known, the tip coordinates can be
easily computed from the marker points {Xc,up

i ,Xc,med
i ,Xc,low

i }i=1,2. Thus the
most substantial step of this module is the marker reconstruction. We consider
two different methods for reconstruction: marker reconstruction from homogra-
phy (section 5.1) and marker reconstruction with cross-ratio (section 5.2).

5.1 Marker Reconstruction with Homograhy

This method is a trivial application of the planar object localization algorithm
(see appendix A). Since the marker is planar, we can model it with six 2D points,
and fit the homography H that brings them to their known image in the current
frame. The model can be thought, for instance, as a set of six points {Xo,up

i ,

Xo,med
i ,Xo,low

i }i=1,2 whose third coordinate is 0 in some reference system o.
From H we obtain the rototraslation T that aligns o axis to c axis. The ex-
pression of the marker points in the camera frame is obtained applying the
transformation T to their corresponding expressions in o.

5.2 Marker Reconstruction with Cross-ratio

This method is based on the single view 3D reconstruction algorithm explained
in appendix B, that reconstructs a triple of collinear points whose real world
distances are known.
It is now useful to briefly recap it, for a simpler explanation of how we adapted
it to our settings.
First the vanishing point image v′ is found, imposing cross ratio conservation
and collinearity (v′ belongs to the line through the three points). The 3D
direction of the triple is the back-projection ray of v′.
The back-projection rays of the three points form, with the 3D line through their
corresponding 3D elements, a system of triangles whose angles and some sides
length are known. From there the points can be reconstructed using triangles
geometry.

Vanishing point computation Since our marker presents two triples on
parallel lines, we can improve the vanishing point estimation using them jointly:
we end up with an over-constrained non-linear system of four equations in two
unknowns that we solve using the Levenberg-Marquadt method (Marquardt,
1963), (Levenberg, 1944).

Reconstruction As the marker orientation is known, an easy approach would
be to obtain the reconstruction of a single point for each triple via triangles ge-
ometry, and obtain the remaining points moving along the marker direction of
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the known lengths 1.
This method has shown in our experiments to be highly prone to noise. The
simple explanation is that, for each triple, only two of the three back-projection
ray determines the solution and not all the available information is exploited.
We improve the robustness by independently reconstructing each point with
triangle geometry. This involves all the back-projection rays, and different com-
binations of them in angles computation.

Fitting Up to now the reconstruction algorithm does not guarantee that the
result is a real marker. We correct this by finding the least square solution.
Let {Xo,up

i ,Xo,med
i ,Xo,low

i }i=1,2 be the marker model expressed in some refer-

ence frame o, and {X̂c,up
i , X̂c,med

i , X̂c,low
i }i=1,2 the estimated marker points. We

apply absolute orientation (see appendix C) to obtain the transformation T that
best aligns the first set of points to the second one. T is applied to the model,
obtaining the least square marker {Xc,up

i ,Xc,med
i ,Xc,low

i }i=1,2.
For a further geometrical check we compute the values∥∥∥Xc,p

i − X̂c,p
i

∥∥∥ for i = 1, 2 p ∈ {up,med, low} (10)

and we discard the current frame if one of these values is higher than a fixed
threshold.

5.3 From Marker Points to Pencil Tip

Using one of the previous methods we can reconstruct marker points. Now we
need to recover the 3D position of the pencil tip.
Note that the marker presents two symmetries: a vertical one and an horizontal
one. These reflect in ambiguity in data association. The horizontal symmetry
is solved in the detection step, while there is still ambiguity in the horizontal
direction. This means that we do not know, for instance, if the xlow1 point
belongs to the left or right triple of marker points.
Indeed, the two different data associations correspond to two possible position of
the pencil, in which the one with smaller Xc

t third coordinate (depth in camera
frame) coincides with a marker occlusion. Thus we simply solve the ambiguity
due to vertical symmetry of the marker by excluding it.
Given that, we define:

Xc,low =
Xc,low

1 + Xc,low
2

2
(11)

Xc,med =
Xc,med

1 + Xc,med
2

2
(12)

And obtain the projection Xc′

t of the pencil tip on the marker plane as:

Xc′

t = Xc,low +
Xc,low −Xc,med

‖Xc,low −Xc,med‖h (13)

1actually the computation of the other points would not be useful, since the two points
and the marker direction determine the tip position.

13



Where h is a given parameter of the pencil model, equal to the distance from
the mean of the two low points of the marker to the projection of the pencil tip
on the marker plane.
Let d be another given parameter of the pencil model, representing the distance
between the pencil tip and the marker plane. To obtain the pencil tip position,
it is sufficient to move along the plane normal of a distance d from Xc′

t , in one
of the two possible directions. The presence two directions is the effect of the
vertical symmetry. We call n+ the true one, that satisfies:

n+ · k = n+

(
0 0 1

)
> 0 (14)

thus the one increasing the dept in the camera frame, since the marker is visible
only when Xc′

t is at lower depth than Xc
t .

In the end the pencil tip 3D position in the camera frame is:

Xc
t = Xc′

t + dn+ (15)
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6 Trajectory Smoothing and Outliers Rejection

This stage of our algorithm is a minor but necessary stage.
The reconstruction is done frame by frame, so the output of the reconstruction
of one frame is not correlated with the neighboring frames. If the detection
phase is inaccurate reconstructed position can be very far from its neighbor-
hood.
During this stage we tackle this problem by considering the sequential nature
of the drawing.
Given a vector of reconstructed 3D points we apply smoothing for each coordi-
nate independently using a sliding window of a fixed size. For each window we
calculate the mean Xmean and the standard deviation Xstd along each coordi-
nate. We label point i in the window as outlier if its distance from the mean is
greater than a threshold dependent on the standard deviation of the window.
In other words point i is an outlier if:

‖Xi −Xmean‖ ≥ k ∗Xstd . (16)

After having removed outliers in the window we calculate the new mean and
substitute the reconstructed positions with the mean position.
In our settings k = 1.5 and the window size is 10. This parameters can be tuned
on the specific video.
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7 Experimental Results

In this section we present the result of the application of our algorithm on two
videos.

7.1 First Video

In this video we draw the word ”ciao” in italic letters. Here we do not raise
up the pencil too much from the table but the drawing is fast. We provide the
link to the full video 2. We first apply the crossratio reconstruction method
(section 5.2), whose results are shown in fig. 6. The reconstruction is quite
accurate and the letters are visible. We compare the results of our extension of

Figure 6: Different views of the reconstruction of section 7.1 using the crossratio
method.

the three collinear point reconstruction method with the ones given by the trivial
solution (Section section 5.1). Using this method the obtained results are not
satisfactory (see fig. 7). There’s only one view (that corresponds approximately
with camera view) in which the reconstruction looks good.

7.2 Second Video

In this video we draw the word ”ciao” in capital letters. From one letter to
another we raise up the pencil to test the correctness of our algorithm on the
height. Here we provide the link to the full video 3.

2 https://youtu.be/dky71el55qo
3 https://youtu.be/U7XAzXeBx-U
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Figure 7: Different views of the reconstruction of section 7.1 using the homography
reconstruction method.

In fig. 8 we can see different views of the result. Based on a comparison with
the original video we can say that the reconstruction is satisfactory. The word
”ciao” drawn during the video is well distinguishable and the frames with the
pencil at an higher z are detected.
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Figure 8: Reconstruction of video in section 7.2 with crossratio. Different views of the
result, points are red when their z coordinate is greater than 1.5 cm
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8 Future work

In this section we describe some improvements that can be inserted in our
pipeline to make our writing tool more robust or more user friendly.

8.1 Detection improvements

The detection step is based on a user provided RGB filter. This means that
many videos of the same pen taken in different conditions need different filters.
At the expense of complexity, two different solutions can be implemented to
make the pencil marker detection step more robust. Both are based on finding
in the current frame a bounding box around the pencil marker, in order to apply
the successive detection steps on a robustly obtained region.

RANSAC for homography Instead of printing the pencil marker on a white
sheet, we can print it on a textured background, similar for instance to the cali-
bration marker. Given a template of the pencil marker, we can match template
features to current frame features (SURF, for instance) and then fit an homog-
raphy that brings template points in frame points. The application of such a
homography to the corners coordinates of the template gives the corner of the
pencil marker in the current frame.
The successive step could be, instead of looking for the lines in the current
frame, to transform the pencil marker lines in the template using the fitted ho-
mography.
Note that this way of proceeding is valid only if the marker is attached to a
planar surface.

Neural network Machine learning techniques are widely employed in vision
problems. For object detection, a common approach is the one of transfer
learning, that consists in the reuse of an already trained convolutional neural
network. The procedure is the following: the last neurons of the pre-trained
network are substituted with other kind of neurons, depending on what kind of
output function we need, and the resulting network is fine-tuned for the object
detection task.
The drawback of this method is that a dataset need to be created. For robustness
with respect different points of view, pencils, and light conditions, the dataset
need to contain samples of a wide set of cases.

8.2 Pencil marker improvements

Our pencil marker presents two major limitations: it can be partially or totally
occluded by the pencil, and it presents a vertical symmetry (thus the need of
the assumption that the pencil is always directed toward the bottom).
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Occlusion This limitation can be overcomed by substituting our marker with
a similar one, that is attached around the whole pen, and presents many vertical
lines in such a way that two or more of them are always visible. The detection
algorithm should take in account this, in different ways:

• Keeping only a pair of near vertical lines.

• Keeping all the lines. Adaptiveness to the number of visible lines is needed
in the reconstruction step, and the radius of the pencil need to be known
to build a marker model that is no more planar when the number of visible
lines is greater than three.

The detection step could also use the Hough algorithm for finding ellipses instead
of lines, to detect the horizontal elements of the marker.

Vertical symmetry The marker should be enhanced with distinctive visual
information in its intersection points, recognized in the detection step. This
would allow to solve the data association problem in the vertical direction, and
understand when the pencil tip is not directed toward the writing surface
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A Planar object localization

A planar object is determined by a rotation matrix R and a translation vector
t expressing its rotation and its position in the camera reference frame. Given
an image of a known planar scene a point on the plane [X Y 0 1]

t
is projected

on the image plane using the following relationship:

uv
1

 = sK [R | t]


X
Y
0
1

 (17)

= sK
[
r1 r2 t

] XY
1

 (18)

= H

XY
1

 . (19)

Using equations 18 and 19 we have:[
r1 r2 t

]
= K−1H . (20)

Then r3 can be written as vector product of r1 and r2.
The resulting rotation matrix might not be orthogonal, so we make it orthogonal
using the following procedure:

[U, V] = svd(R̃) (21)

R = UVT . (22)
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B Three collinear points reconstruction

Given the image, taken with a calibrated camera (P = [M | m] is known), of
three collinear points whose real world distances are known, this algorithm re-
constructs their 3D position in the camera frame.

π

a’

c’

b’•

•

•

•v’

• B

• A

• C

∞

γ

α
•
O

Figure 9: Illustration of reconstruction of three collinear points

In fig. 9 we have A, B, C that are points in the real world, a′, b′, c′ that
are their images and v′ that is the image of the vanishing point of the direction
identified by the line passing through A, B, C. The point O is the camera
center, the plane π is the image plane. The object modeled by the three points
it is completely defined by its orientation and its position. The point v′ can be
determined by imposing the cross ratio invariance:

‖a′ − c′‖ ‖b′ − v′‖
‖b′ − c′‖ ‖a′ − v′‖ =

‖A−C‖
‖B−C‖ . (23)

This is a non-linear scalar equation. We need at least two constraints for deter-
mining v′, so we impose that v′ belongs to the line l joining a′, b′, c′:

ltv′ = 0 . (24)
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Orientation The orientation of the object is the orientation of the line passing
through A,B,C. This can be easily determined as the back projection ray of
v′, i.e. the line passing through v′ and O, with equation M−1v′.

Position The position of the object in the camera frame is the distance from

O to A. We can apply the sine theorem to the triangle
4

ABC:

OA = AC
sin(γ)

sin(α)
. (25)

The angle α is easily determined as the angle between lines M−1v′ and M−1a′:

cos(α) =
(M−1v′)t(M−1a′)

||M−1v′ ||2||M−1a′ ||2
. (26)

Similarly, γ is the angle between lines M−1v′ and M−1c′.
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C Absolute orientation

Suppose that we are given the coordinates of points as measured in two different
reference frames. The problem of recovering the transformation between these
two from the points coordinates is known as absolute orientation.
Formally, given correspondences {(XA

i ,X
B
i )}i=1..N , we seek for the solution of

the following minimization problem:

min
s,R,t

N∑
i=1

∥∥sRXA
i + t−XB

i

∥∥2
s.t.

[
R t
0T 1

]
∈ SE(3)

s > 0 .

(27)

Note that, if the model of an object is known and described by a set of 3D
points, this algorithm can be used to fit the model to a noisy perception of the
object. It is sufficient to find the transformation that best aligns the object
model to the current perception, and then apply it to the object model. The
result is the least square model in the perception reference frame.
We employ the Horn’s closed form solution (Horn, 1987), without taking in
account the scale difference s, not present in our application.
Here we report the solution to the minimization problem:

min
R,t

N∑
i=1

∥∥RXA
i + t−XB

i

∥∥2
s.t.

[
R t
0T 1

]
∈ SE(3) .

(28)

The reader is referred to the original paper for a full explanation.

Rotation Let X̄A and X̄B be the centroids of the two set of points, and
X̄F
i = XF

i − X̄F for F ∈ {A,B}. Let M be the matrix of sum of products
of coordinates measured in the A system with coordinates measured in the B
system:

M =

N∑
i=1

X̄A
i · X̄B

i =

Sxx Sxy Sxz
Syx Syy Syz
Szx Szy Szz

 . (29)

The quaternion representing the best rotation is the eigenvector associated to
the highest eigenvalue of the matrix:

S =


Sxx + Syy + Szz Syz − Szy Szx − Sxz Sxy − Syx

Syz − Szy Sxx − Syy − Szz Sxy + Syx Szx + Sxz
Syz − Szy Sxy + Syx −Sxx + Syy − Szz Syx + Sxy
Sxy − Syx Szx + Sxz Syx + Sxy −Sxx − Syy + Szz


(30)
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whose elements are sum and differences of the elements of M.

Translation Let R rotation matrix corresponding to the best quaternion, the
translation is obtained as:

t = X̄B −RX̄A . (31)
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D Dilation and Erosion

Binary images may contain numerous imperfections. In particular, the binary
regions produced by simple thresholding are distorted by noise and texture.
Morphological image processing pursues the goals of removing these imperfec-
tions by accounting for the form and structure of the image. Morphological
techniques probe an image with a small shape or template called a structuring
element. The structuring element is positioned at all possible locations in the
image and it is compared with the corresponding neighborhood of pixels. The
structuring element is a small binary image, i.e. a small matrix of pixels, each
with a value of zero or one. The structuring element is said to fit the image if,
for each of its pixels set to 1, the corresponding image pixel is also 1. Similarly,
a structuring element is said to hit, or intersect, an image if, at least for one of
its pixels set to 1 the corresponding image pixel is also 1.

Erosion The erosion of a binary image f by a structuring element s produces
a new binary image g with ones in all locations (x, y) of a structuring element’s
origin at which that structuring element s fits the input image and 0 otherwise,
repeating for all pixel coordinates (x, y). Erosion has the effect of shrinking
white regions. Erosion with small square structuring elements shrinks an image
by stripping away a layer of pixels from both the inner and outer boundaries of
regions. The holes and gaps between different regions become larger, and small
details are eliminated.

Dilation The dilation of an image f by a structuring element s produces a
new binary image g with ones in all locations (x, y) of a structuring element’s
orogin at which that structuring element s hits the the input image f and 0
otherwise, repeating for all pixel coordinates (x, y). Dilation has the opposite
effect to erosion, it adds a layer of pixels to both the inner and outer boundaries
of regions.
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