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Abstract

In this paper we present our approach for the NIPS 2017
”Learning To Run” challenge. The goal of the challenge
is to develop a controller able to run in a complex environ-
ment, by training a model with Deep Reinforcement Learn-
ing methods. We follow the approach of the team Reason8
(3rd place). We begin from the algorithm that performed
better on the task, DDPG. We implement and benchmark
several improvements over vanilla DDPG, including paral-
lel sampling, parameter noise, layer normalization and do-
main specific changes. We were able to reproduce results of
the Reason8 team, obtaining a model able to run for more
than 30m.

1. Introduction
Running is a very complex task. Understanding the

dynamics of the human body while running is important
for studying rehabilitation and the development of sophisti-
cated prosthesis. From a control point of view, it involves
the actuation and coordination of a large set of muscles and
high dimensional perception.
Reinforcement Learning (RL) [1] has been successfully ap-
plied to various kinds of control problem and the introduc-
tion of deep neural networks augments the application sce-
nario.
The NIPS 2017 Learning To Run [2] competition is focused
on developing a controller to enable a physiologically-based
human model to navigate a complex obstacle course as
quickly as possible. We are provided with a human mus-
culoskeletal model and a physics-based simulation environ-
ment where it is possible to synthesize physically and phys-
iologically accurate motion. The score is based on the dis-
tance the agent travels in a given amount of time. The scope
of our project is to replicate the results of Reason8 team [3]
that placed 3rd in the competition.

Following their approach, we addressed the problem using
DDPG algorithm. We started from the OpenAI baselines
[4] implementation and extended it with:

• Parallel sampling to speed up learning and evaluation
processes.

• Changes to improve exploration capabilities.

• Domain-specific improvements to the training step.

Moreover we compared the performance of our algorithm
with state spaces of different dimensions.
This paper is structured as following: in section 2 we review
the basics of Reinforcement Learning, in section 3 we pro-
vide a brief overview of the RL methods which DDPG, the
method of our choice, builds upon, in section 4 we illustrate
our approach to the problem and the task-specific improve-
ments we introduced over the literature. In section 5 we
describe the environment and our modifications. Finally in
section 6 we present our experimental results.

2. Background
We consider a standard reinforcement learning setup

consisting of an agent interacting with an environment in
discrete steps. At each step t the agent receives some rep-
resentation of the environment’s state st, takes an action at
and receives a scalar reward rt. We model the problem as
a Markov decision process (MDP) [5] which comprises: a
state spaces S, an action space A, an initial state distribu-
tion with density µ(s), a stationary transition dynamics dis-
tribution with conditional density p(st+1|st, at) satisfying
Markov property, and a reward function r : S ×A → R. A
policy is used to select actions in the MDP, representing the
agent behavior. Formally it is denoted by πθ : S → ∆(A)
where ∆(A) is a set of probability measures on A and
θ ∈ Rn is a vector of n parameters. The return rγt is the
total discounted reward from time step t onwards, rγt =

1



∑∞
k=t γ

k−tr(sk, ak) where 0 < γ < 1. The agent’s goal is
to maximize the cumulative discounted reward denoted by
J(π) = Es1∼µ [rγ1 |π].

3. Related work

Policy gradient methods rely upon optimizing a param-
eterized policy in the direction of the performance gradient
∇θJ(πθ). A straightforward approach to accomplish this
is presented in [6] with REINFORCE algorithm, that uses
Monte Carlo sampling to estimate the performance gradient
considering a stochastic policy. DPG [7] expands on this by
considering deterministic policies only, for continuous ac-
tion spaces. To ensure adequate exploration, an off-policy
actor-critic algorithm is introduced to learn a deterministic
target policy from an exploratory behavior policy. How-
ever, directly using neural networks as function approxi-
mators leads to unsatisfactory results due to two problems:
a) most optimization algorithms for neural networks assume
that samples are independently and identically distributed,
which is not true when samples are generated from explor-
ing sequentially in an environment b) since the network
Q(s, a|θQ), part of Q-learning algorithms, being updated
is also used in calculating the target value, the Q update is
prone to divergence [8]. DQN [9] implements Q-learning
using a deep neural network to approximate the Q function.
To address the problem (a) DQN introduces a replay buffer
which stores transitions generated by the environment. Dur-
ing training, a batch of transitions is drawn from the buffer
to restore the i.i.d. property. Although, since a maxi-
mization over the action space is required, DQN does not
scale with high-dimensional and continuous action spaces.
DDPG [8] solves all the these problems by using 1) a de-
terministic parametrization of the actor π(s), updated in the
direction of the gradient ofQ(s, π(s)). This is a scalable al-
ternative to global maximization, that is infeasible in high-
-dimensional continuous action spaces 2) a replay buffer
3) separated target networks with soft-updates to improve
convergence stability.

4. Proposed approach

In this section we describe our solution to the task of the
“Learning to run” challenge. The purpose of our project was
to replicate the results obtained by the Reason8 team. Ac-
cording to [3] the method that best performed on the chal-
lenge task was DDPG, therefore that was our choice. There
are several reasons why DDPG is a good choice for this
problem:

• The environment simulator, OpenSim [10], is very
slow and generating samples can take seconds. There-
fore having a sampling-efficient method is a must. Be-
ing an off-policy method, DDPG allows re-usage of

all the samples, whereas on-policy approaches would
require to throw them away at each update.

• Being an off policy method, sampling agents do not
need to behave according to the same policy. This
highly reduces the synchronization overhead.

4.1. DDPG

DDPG [8] is an off-policy actor critic method. The actor
network implements the agent’s policy, as a deterministic
function π : S → A. The critic network approximates
Q(s, a). Critic is trained using off-policy data coming
from the replay buffer, that contains tuples (st, at, rt, st+1).
Critic’s task is to minimize the Bellman error (notice that
the policy is deterministic, so we can avoid the expectation
over actions):

Q(st, at | θQ) = r(st, at) + γQ(st+1, π(st+1 | θπ) | θQ)
(1)

where θQ are parameters of the critic network and θπ are
actor’s parameters. It is evident in 1 that the update step of
the weights θQ comprises Q(st, at | θQ) in the target, re-
sulting in an iterative update prone to divergence. DDPG
solves this problem using target networks. Target networks
are copies of the actor and critic networks that are only used
for computing target values, and softly updated for improv-
ing stability:

θ′ = τθ + (1− τ)θ′ τ � 1 (2)

where θ are the weights of the original network and θ′ the
weights of the target networks.
The resulting error for the critic network is:

L =
1

N

N∑
i=1

(yi −Q(si, ai | θQ))2 (3)

with target

yi = ri + γQ(si, π(si | θ′π) | θ′Q) (4)

The actor is updated using the estimated deterministic pol-
icy gradient, here reported for the sake of completeness:

∇θπJ ≈
1

N

N∑
i=1

∇aQ(s, a | θQ) |s=si,a=π(si) ∇θππ(s | θπ) |si

(5)

4.2. DDPG improvements

In this section we describe the techniques we used to in-
crease the vanilla DDPG performance.



Parallel sampling A key step in any reinforcement learn-
ing algorithm is the generation of (st, at, rt, st+1) transi-
tions to gather information from the environment. Since our
simulator is very slow, making this step as fast as possible is
desirable. Parallelization in our algorithm is implemented
through three types of threads: sampling threads, train-
ing thread and evaluation threads. Each sampling thread
is tasked with collecting trajectories using the provided pol-
icy, pushing them in a common queue and waiting for a new
policy. The training thread waits samples from m sampling
threads, stores them in the replay buffer and trains the ac-
tor and critic networks for a fixed number of training steps.
The new actor network is then sent to the waiting sampling
threads that can now restart the sampling process. Evalu-
ation threads are spawned every fixed number of training
steps.
Having multiple sampling threads running policies with dif-
ferent weights improves exploration and results in a sub-
stantial performance improvement. We used 20 sampling
threads, 1 training thread and 5 evaluation threads in our im-
plementation. We found out in our experiments that m = 1
is a good trade-off between sampling and training.

Exploration To explore we used action noise and param-
eter noise [11] in an alternated way. At the beginning of
an episode we selected between action noise and parameter
noise with 0.7 and 0.3 probability respectively.
Action noise is directly applied to the action selected by the
actor network. We used an Ornstein-Uhlenbeck (OU) [12]
process to generate correlated noise for efficient exploration
in physics based environments.
Parameter noise perturbs actor network weights to obtain
a state dependent exploration, thus more coherent with re-
spect to action noise. The noise used in parameter noise is
sampled at the beginning of an episode and it’s kept fixed
for all the episode. Parameter noise works well with layer
normalization [13]. Layer normalization, as the name says,
normalizes the output of a selected layer. This technique,
besides stabilizing training, makes possible to use the same
perturbation scale across all network layers. We used layer
normalization both for actor and critic networks applying it
to all layer except the last one before the non linearity.

States and actions flip The model has a symmetric body,
thus it’s easy to increase the sample size by flipping states
and actions. Flipping a state means to swap left and right
parts of the body, flipping an action means to swap actua-
tions of left and right legs. States and actions flip is imple-
mented in this way: we sample transitions (st, at, rt, st+1)
from the replay buffer, flip state components of st and st+1,
flip the action at and add to the batch original as well as
flipped transition. This has an easy interpretation: we know
that if action at in state st , results in state st+1 and in a

reward signal rt, doing the symmetric action with respect
to at in the symmetric state with respect to st results in the
symmetric state with respect to st+1 and in the same reward
signal rt.
Flipping transitions helps in obtaining symmetric policies,
that is desirable since running is a symmetric task.

5. Environment
The agent is a musculoskeletal model including informa-

tion about muscles, joints and links moving in a 2D environ-
ment (no movement is possible along Z axis). Kinematic
quantities are provided for body parts and joints, while acti-
vation, fiber length and fiber velocity are provided for mus-
cles.
The total amount of variables describing the state of the
agent is 146. The agent can actuate 9 muscles for each leg,
thus a ∈ [0, 1]18. In our version of the environment we re-
moved obstacles, obtaining a slightly easier version of the
task. Reward is defined as the change in the x coordinate of
the pelvis for each step plus a small penalty for using lig-
ament forces. An episode terminates when the agent falls
(pelvis y < 0.65) or after 1000 steps. Simulation is based
on the OpenSim library that relies on the SimBody physics
engine. Due to a complex physics engine the environment
is quite slow compared to standard RL environments (Ro-
boschool, Mojoco, etc.) and a step can take seconds, thus it
is crucial to use the most sample-efficient method.

5.1. Environment modifications

We used several modifications of the environment dur-
ing training to improve efficiency and to help the learning
algorithm.

Reward We added a small bonus to the reward for each
time-step survived. We did not study the contribution of this
change thoroughly, but we expect it to add some greediness
to the initial training steps to favor policies that keeps the
model standing.

Environment accuracy We used a lower integrator accu-
racy with respect to the standard one of the simulator ob-
taining 5x speedup. After some episodes the environment
becomes slower with respect to initial episodes, probably
for a memory leak. We solved this problem doing a reset of
the environment after 100 episodes.

Relative positions As mentioned above, position vectors
of the model body parts are exposed by the simulator as
absolute. For the purpose of learning, keeping an absolute
reference frame is undesirable. In fact, being running an
approximately periodic task, having the skeleton in some
position at a given distance from the origin, should make



no difference from having it in the same position at another
distance. Therefore, we modified the observation vector by
centering the x coordinates of the body parts around the
pelvis x. Exploiting such symmetry of the model enables
shorter learning time and, most importantly, higher general-
ization.

State variables OpenSim exposes a number of variables
for a musculoskeletal model. Even though to preserve the
Markovian property we should consider them all, many of
them are in practice useless for the task to learn. In training
our model, two subsets of them were considered and we
refer to them as full-state and reduced-state.
Reduced-state comprises the x, y position of body parts,
the rotation and rotational speed of joints, the speed and
position of the center of mass, resulting in s ∈ R34. Namely
body parts are head, torso, right and left toes and talus and
joints are ground pelvis and left and right ankles, hips and
knees.
Full-state takes into account all the variables from reduced-
state, together with the speed and acceleration of body parts
and acceleration of joints, resulting in s ∈ R67.

6. Experiments

In this section we describe our experimental results. For
all the experiments we ran DDPG algorithm with the modi-
fications we describe in sections 4 and 5. We performed an
ablation study to test the relevance of our main changes to
vanilla implementation. We compared the performance of a
model trained on the reduced-state space with respect to the
full-state space. Moreover we compared the quality of the
models learned with or without state-action-flip and param-
eter noise, in terms of performance and required training
steps. All the models running on the reduced-state config-
uration share the same architecture for actor and critic net-
works, with Xavier initialization [14] for the neurons. Best
performing hyper-parameters are listed in table 1.

6.1. State-action flip and parameter noise

In this experiment we investigated on the importance of
state-action flip and parameter noise (PN) for the learn-
ing process. We trained four models for approximately 106

training steps with all the combinations of the two improve-
ments, i.e. with and without state-action flip and parame-
ter noise. Performance statistics are reported in figure 1a.
From our experimental results, introducing both modifica-
tions leads to both better performance, in terms of longer
run distance, and a significant speed-up in terms of training
steps to reach same distance. It is also worth highlighting
that the learned model with state-action flip achieved higher
performance than the one with PN only. This possibly re-
marks the importance of domain-specific additions in the

Parameters Value

Actor network architecture [64, 64], elu activation
Critic network architecture [64, 32], tanh activation

Actor learning rate Linear decay from 1e−3
to 5e−3 in 106 steps with
Adam optimizer

Critic learning rate Linear decay from 2e−3
to 5e−5 in 106 steps with
Adam optimizer

Training steps 300
Batch size 400

Sampling processes 20
γ 0.9
τ 0.0001

Replay buffer size 5 · 106

Reward scaling 10
Action repeat 5

Parameter noise probability σ = 0.2
OU exploration parameters θ = 0.1, µ = 0, σ = 0.2

Table 1: Hyper-parameters used in our best experiment with
reduced-state

context of RL which outperformed an uninformed explo-
ration.

6.2. Sampling threads

In this experiment we analyzed the impact of the num-
ber of sampling threads. We trained two models with 10
and 20 sampling threads respectively. We used the same
sampling-training strategy: wait for samples from 1 thread,
check the state of the other threads (collecting samples if
available), train for 300 steps, send the updated policies to
waiting threads that restart the sampling process. Figure
1b shows that, as expected, the experiment with 20 sam-
pling threads outperformed the experiment with 10 sam-
pling threads. This shows the importance of exploration in
this task, as well as the importance of parallelization.

6.3. Full-state vs. reduced-state spaces

In this experiment we compared the performance of two
learned models, the first trained over full-state space and the
second over reduced-state space. The former was trained
using a [150, 64] elu actor network and a [150, 50] tanh
critic network. The latter was trained with a [64, 64] elu
actor network and a [64, 32] tanh critic network. Perfor-
mance statistics are reported in figure 2. From our exper-
iments, models trained with a reduce-state space outper-
formed those trained with the bigger state space. Full-state
space introduces several variables that could help in learn-
ing a controller for our task, but they also increase the com-
plexity of the model. We did not test thoroughly the net-
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works architecture for the full-state space and incrementing
the number of neurons might lead to better performance.

6.4. Comparison with Reason8 results

The ultimate goal of our project was to replicate the re-
sults obtained in the NIPS 2017 competition by one of the
best teams, Reason8. In figure 3b [3] shows the maximal
rewards achieved in the given time, with a peak at 38.46 m
for their best model. Our best model, with the same DDPG
improvements, ran 32.97 m, as reported in table 2. The per-
formance we achieved are comparable to those of Reason8
team and, from our perspective, satisfactory.

6.5. Equipment

Experimental results reported in sections above are ob-
tained by running our implementation on the following ma-
chines:

• Intel Xeon (32 cores, 64 threads), RAM 256 GB,
Ubuntu 16.04 - owned

Method State space Distance (m)
Flip - PN Reduced 33.4074
Flip - No PN Reduced 25.8489
Flip - PN Full 15.4193
No Flip - PN Reduced 8.6108
Flip - No PN Reduced 2.535

Table 2: Run distances by different configurations of the
DDPG algorithm in our experiments

• Intel Xeon (16 cores, 32 threads), RAM 128 GB,
Ubuntu 16.04 - owned

• Intel Xeon (16 cores, 32 threads), RAM 64 GB,
Ubuntu 16.04 - Microsoft Azure

6.6. Implementation

We made our code available in our github repository:
https://github.com/MultiBeerBandits/learning-to-run.

7. Conclusions
In our project we replicated the results obtained by one

of the best teams in the NIPS 2017 - Learning to Run com-
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Figure 2: Performance of models trained over full vs re-
duced state space

https://github.com/MultiBeerBandits/learning-to-run


petition. We implemented several improvements on top of
vanilla DDPG algorithm, either general or domain-specific.
We compared the performance of the algorithm over two
state spaces with significantly different dimensionality and
investigated the impact of our changes on the quality of the
learned models. Future work might expand from this by
researching more on the architecture of actor and critic net-
works for large state spaces like full-state. It would also
be interesting to spend more time in tuning other RL algo-
rithms that performed worse in their baseline implementa-
tion and compare them with our achieved results. More-
over the algorithm could be extended to compete in the
NIPS 2018 - AI for Prosthetics challenge [15].
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